

International Conference under the auspices of:

Available sensor technologies for precision farming and welfare assessment in dairy goats

Gerardo Caja, Emeritus Prof. (<u>gerardo.caja@uab.es</u>) Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, University Autonomous of Barcelona (UAB) (Bellaterra, Spain);

to improve small ruminant welfARE management

European

Commission

Horizon 2020 European Union function for Research & Innovation

The goat production systems scenario for new technologies: 1/2

- Small ruminants (SR) are the greatest livestock population in the world (excl. poultry): 2,391 Mhead (FAOstat, 2022) sheep:goats = 53:47%.
- Located on areas of poor resources and facilities, but rich in biodiversity, and where they are a key resource for employment and capitalization (*pecora*).
- SR products are **favorably considered by consumers,** mainly in Asian and Mediterranean countries (health, quality, welfare).
- Farm size increased during the last years in SR to compensate the rise of costs and profits decline.

The goat production systems scenario for new technologies:2/2

- SR are fully e-ID (radio frequency) in the EU and UK, because the BSE crisis (1996) and the EU Regulations on SR's ID (2005, 2015): tool for PLF (precision livestock farming) implementation.
- Many cost-benefit studies proved the **benefits of e-ID in SR**.
- Low IoT (Internet of things) penetration in livestock (4%) and in SR (<0.1%).
- Expected development of PLF technologies for monitoring the production and welfare of SR.

Goat's population and communication technologies maps (World Mapper)

Transponders vs. Sensors: 1/2

- Transponder (Transmitter-responder): So-named 'microchip' Electronic device which uses radio-frequency (RF) for sending a fix response (e-ID).
- **Typology:** Modifies their reading performances (key aspect)
 - Size: 'the greater the better' (max weight?)
 - Power source:
 - Passive (no battery)
 - Active (with battery)
 - RF band:
 - Low (LF): 134.2 kHz (collision)
 - High (HF): 13.56 MHz (printed tags)
 - Ultra High (UHF): 860-960 MHz (safety?)
 - RF technology (operation mode):
 - Full-Duplex (2-ways transmission)
 - Half-Duplex or Simplex (1-way)

Transponders vs. Sensors: 2/2

• Sensor (Transducer):

Input device which produces an output (signal) according to the input quantity (physical, chemical or biological). It is a part of a recording or control system.

- **Taxonomy** (NRC, 1995):
 - Self generating sensors: direct response (e.g. Faraday's thermistor)
 - Modulating sensors: able to vary their output according to a second input (e.g. fiberoptic magnetic-field, saver laser receiver...)
 - Smart sensors: their complexity concealed by an interface and on-chip signal (e.g. temperature controllers...)
 - Aim-related sensors: 12 main types according to technology.
 - Animal based classification: Wearables or non-wearables

Animal based sensors: 1/2

• Wearables: on/in the animal (Caja et al., 2020)

Туре	Technology	Indicator		Device	Usage
Transponder (not a sensor)	Radio frequency	Individual data	•	Ear tag Bolus Inject	Sorting, feeding, mating
Geographical positioning system	Satellite network	Position	•	Collar	Virtual fencing, spatial location, grazing monitoring
(GPS/GNSS)	Bluetooth	Relative distance	•	Collar + ear tag	Mother-offspring relationship

Animal based sensors: 1/2

• Wearables: on/in the animal (Caja et al., 2020)

Туре		Technology	Indicator		Device	Usage
Transpo (not a se	nder ensor)	Radio frequency	Individual data	•	Ear tag Bolus Inject	Sorting, feeding, mating
Geographical positioning system	Satellite network	Position	•	Collar	Virtual fencing, spatial location, grazing monitoring	
(GPS/GI	NSS)	Bluetooth	Relative distance	•	Collar + ear tag	Mother-offspring relationship
Sensor	Temperature	Thermistor	Rectal, rumen or vaginal	•	Ear tag Bolus Inject	Health (fever), stress, heat, drinking bouts
	рН	Voltage	Rumen pH	•	Bolus	Feeding, rumen function (health)
	Pressure	Several	Rumen activity	•	Bolus	Rumination
	Sound	Microphone	Sound	•	Bolus Halter	Heart rate, rumination, coughing
	Acceleration	3-axial piezoelectric	Motion	•	Ear tag Bolus Collar Pedometer	Motion, resting, feeding, rumination, lameness (health)
	Biomarker	Several	Several	•	Ear tag	Metabolites (health)

Animal based sensors: 2/2

• Non-Wearable: on/in the facilities (Caja et al., 2020)

Туре	Technology	Indicator	Device	Usage
Cameras	Optical imaging	Shape	Handheld or fixed camera	Behavior, growth, supervision
	Infrared imaging (IR)	Temperature	Handheld or fixed camera	Thermometric monitoring, udder health (mastitis), head and hoof health, stress (eye)
	Near infrared (NIR)	Milk flow	Absorbance/reflectanc e meters	Milk volume and flow meters
	3D imaging	3D shape	Fixed camera	Body reserves
	Laser beam	Height	Fixed laser	Size, growth

Caja et al. (2020). J. Dairy Res. 87S1:34-36 (open access).

https://www.cambridge.org/core/journals/journal-of-dairy-research/article/sensing-solutions-for-improving-the-performance-health-and-wellbeing-of-small-ruminants/27931C4E696F45D282D8DE8C8F1194F0

Animal based sensors: 2/2

• Non-Wearable: on/in the facilities (Caja et al., 2020)

Туре	Technology	Indicator	Device	Usage
Cameras	Optical imaging	Shape	Handheld or fixed camera	Behavior, growth, supervision
	Infrared imaging (IR)	Temperature	Handheld or fixed camera	Thermometric monitoring, udder health (mastitis), head and hoof health, stress (eye)
	Near infrared (NIR)	Milk flow	Absorbance/reflectanc e meters	Milk volume and flow meters
	3D imaging	3D shape	Fixed camera	Body reserves
	Laser beam	Height	Fixed laser	Size, growth
Microphones	Sound	Intensity and frequency	Fixed microphone	Coughing, lambing, acute stress
Weighing cell	Electromagnetic force restoration	Weight	Automatic scale	Growth, weight, gait recording (lameness)
Ambient sensors	Several	Environmental data	Several sensors	Comfort and health monitoring

Caja et al. (2020). J. Dairy Res. 87S1:34-36 (open access).

https://www.cambridge.org/core/journals/journal-of-dairy-research/article/sensing-solutions-for-improving-the-performance-health-and-wellbeing-ofsmall-ruminants/27931C4E696F45D282D8DE8C8F1194F0

Implementation of a PLF sensor system on farm conditions (Caja et al., 2020)

2

https://www.cambridge.org/core/journals/journal-of-dairy-research/article/sensing-solutions-for-improving-the-performance-health-and-wellbeing-ofsmall-ruminants/27931C4E696F45D282D8DE8C8F1194F0

Non-wearable: Smart monitoring and alert of SR electric fences

- Need for permanent care of electric fences in SR.
- Measuring fence voltage (0-10⁴ V) every 10 min.
- Alerting immediate fence problems (e-mail, SMS, App).
- GPS sensor for device position location.
- Data transmission without mobile card (e.g. Sigfox network).
- Self-sufficient operation (solar panel and Li-ion battery).

Wearable: Virtual fencing by using Global Positioning System

Inefficient learning in sheep ($\approx 1/3$) needing at least 3 interactions (Brunberg) et al., 2017; Marini et al., 2018). Efficient learning in goats (>80%), but the 0 A = D= 1)1 as Det Des 42 375 Minibukk 2 6000 1 5 1 Bas () 14

- GPS sensor and Bluetooth (beacon).
- Grazing map drawing. •
- Total weight carried 505 g.
- Battery operated (8-10 h).

Non-wearable: Milk recording using (e-ID) and sensors (NIR)

Non-wearable: Walk-over-weighing (WoW) using e-ID and sensors

Non-wearable: Lameness detector using hoof weigh sensors

Lameness prevalence: 10 to 33%

- Healthy hooves: front > back load (60:40%).
- Extensive infected hooves: same load.
- Mild infected hooves: difficult to assess.
- Sensitivity 66-100% (Score 2 = 85-100%)
- Specificity: 51-100% (Score 2 = 95-100%)

Inter-digital dermatitis (IDD) assessment

Front () and back () hooves:

Wearable: Accelerometers responses according to body site attachment in sheep (Barwick et al., 2020)

Grazing

- Standing*
- Walking
- Laying*
- * = includes rumination

Accuracy of behavior identification varies according to body site's attachment (P < 0.05):

Wearable: Rumen temperature and pH in dry goats according to feeding and ambient conditions (Castro-Costa et al., 2015)

Wearable: Rumen temperature of dairy ewes according to ambient conditions (Caja et al., 2020)

AWIN assessment protocol for livestock: 4 Principles, 12 Criteria and 24 Indicators

12-Welfare Criteria ×2 = 24 Welfare Indicators

Results of AWIN 2-steps: Dairy goat farms (n = 30) in Italy (Battini et al., 2016)

Comparison of AWIN in dairy goat farms: Step 1 (outside pens)

Indicator	Wildbolz-Gallego et al. (2019)	Battini et al. (2016)	
Farms (country)	10 (ES)	30 (IT)	
No. goats/farm (breed)	634 (Florida)	894 (Alpine)	
Queueing at feeding, %	0	7.2 🌗	
Queueing at drinking, %	0	1.4	
Hair condition, %	0.9	24.1 🕕	
Dehorning defects, %	8.2	12.7 🌗	
Kneeling at feeding, %	0	2.3	
Oblivion (depression), %	-	0.1	
Heat/cold stress, %	-	0.4 / 3.9	
Lameness, %	0.6	3.1	
Human contact, %	36.5	2.3	
Contact latency, s	103	53	

Comparison of AWIN in dairy goat farms: Step 2 (inside pens)

Indicator	Wildbolz-Gallego et al. (2019)		Battini et al. (2016)		016)
BCS Thin / Fat, %	15.3 / 20.6			13.0 / 6.2	
Fecal soiling, %	6.3			15.3	
Udder asymmetry, %	27.6			3.8	
Dehorning defects, %	8.2	N	lo full	12.7	
Dirty hind quarters, %	-	coin	cidence eding	32.7	0
Abscesses, %	11.2		search	26.2	0
Head injuries (ears)	-			35.5	
Overgrown claws	23.0			55.5	Ō
Knee calluses, %	-			92.9	Ō
Discharges Eye / Nose, %	36.5 / 44.0			0.9 / 5.7	

Prioritization of welfare issues of dairy goats in Techcare project

Integrating to impro

TECH	Welfare problems in dairy goats	Priority		
C D D F SS	Spain: Intensive			
CALL F	Mastitis and milking management	1		
tegrating innovative TECHnologies along the value Chain to improve small ruminant welfARE management	Nutrition (low, high, bad) and offer (excess)	2		
www.techcare-project.eu	Shelter and facilities conditions	3		
	Greece: Semi-intensive			
	Nutritive competition (agonistic behavior)	1		
	Shelter and bedding conditions	2		
	Mastitis and milking management	3		
	Norway: Mixed			
	Mastitis and milking management	1		
	Parasitism (internal and external)	2		
	Agonistic social behavior	3 🔍		

Prioritization of technologies for dairy goats in TechCare project

TECH	Sensing technology for dairy goats	Priority		
CADERS	Spain: Intensive			
CALL F	Weather station (internal-external)	1		
tegrating innovative TECHnologies along the value Chain to improve small ruminant welfARE management	Automatic milk meters (or bulk tank)	2		
www.techcare-project.eu	UHF-ID readers and accelerometers	3		
	Greece: Semi-intensive			
Weather station	Weather station (internal-external)	1		
	Automatic milk meters (or bulk tank)	2		
	UHF-ID readers and accelerometers	3		
er TEOREE -PHO	Norway: Mixed			
and the second second	GPS and accelerometers	1		
	Automatic milk meters (or bulk tank)	2		
	Infrared cameras (mastitis and health)	3 🔨 🖁		

Prioritized technologies and welfare issues for producing early warning systems (EWS) for dairy goats in the TechCare project

Integrating innovative TECHnologies along the value Chain to improve small ruminant welfARE management

www.techcare-project.eu

Technology	Welfare issue
Weather stations (internal-external)	Shelter and facilities conditions
Automatic milk meters (or bulk tank weight)	Mastitis and milking management, nutrition
GPS and accelerometers UHF-ID readers and accelerometers	Grazing, agonistic and nutritive behavior
Automatic weighing scales	Nutrition, health

Conclusions: 1/2

- SR are a huge market for sensor development and, currently, PLF implementation is poorly developed.
- Generalization of e-ID is a key for individual welfare assessment (e.g. EU).
- Sensors are input devices producing variable outputs (signals) according to the input quantity: Expected new developments for SR.
- Currently prioritization of welfare problems depends on species, age and production system.
- Very few research has been done in dairy goats.

Conclusions: 2/2

- Wearable sensors seems to be the ideal option for early alert/warning systems.
- Non-wearable may be the currently cost-efficient option for welfare assessment and early alert/warning systems.
- Not all sensor device expectances are today warranted and further applied research and innovation companies are highly needed.

Acknowledgements:

- European Commission H2020 Research and Innovation Program: Grant #862050.
- International TechCare Consortium:

Elhadi A.¹, González-García E.², Tesnière G.³, Gautier J-M.³, Giovanetti V.⁴, Sossidou E.⁵, Grøva L.⁶, Jørgensen G.H.M.⁶, Halachmi I.⁷, Dwyer C.M.⁸, Morgan-Davies C.⁸ ¹G2R-UAB (Bellaterra, Spain); ²SELMET-INRAE (Montpellier, France); ³IDELE (Toulouse, France); ⁴AGRIS-Sardegna (Sassari, Italy); ⁵ELGO-DIMITRA (Thessalonica, Greece); ⁶NIBIO (Tingvoll/Tjøtta, Norway); ⁷ARO (Beit Dagan, Israel); ⁸SRUC (Edinburgh, UK).

Integrating innovative TECHnologies along the value Chain to improve small ruminant welfARE management

European Commission

Horizon 2020 European Union funding for Research & Innovation

www.techcare-project.eu