TechCare

2. Transportation trials

Overview of 5 trials carried out during transport (all sectors)

PARTNER	PILOT FARM	TRIAL N° - PERIOD	MAIN QUESTION(S) ADDRESSED
	SRUC (boat)	Trial n°1 – 01/06/23 to 30/11/23	Can sea and transport conditions predict the impact on sheep welfare when transported at sea?
SRUC	Kirkton (trailer)	Trial n°2 – 19/01/2023; 10/01/2024; 29/01/2024	 Can accelerometer data, temperature and camera inform welfare issues potentially encountered by fat lambs (Scottish Blackface) sent to the abattoir by road on a trailer (~100 km of mountain road)?
UAB	Facultat de Veterinaria	Trial n°1 – Oct 22 to Nov 22	Can sensors be used to monitor trailer transportation conditions of small ruminants?
Universitat Autònoma de Barcelona	UAB (trailer)	Trial n°2 – Oct 23 to Nov 23	 What effects does road transport stress over a short journey (2 h) have on lambs and goat kids' welfare under different densities?
Agris	Bonassai (truck)	Trial n°1 – Nov 22 to Dec 22 Mar 23 to Apr 23	 Are thermo-hygrometers able to detect heat/cold stress during transport of lambs?

(a) 2. Transportation trials

- Goat kids and lambs road transport with trailer
- 2. Sheep transport by sea

2. Transportation trials

Goat kids and lambs road transport with trailer

Gerardo Caja (UAB)

Integrating innovative TECHnologies along the value Chain to improve small ruminant welfARE management

Transportation: Metabolic and sensor-based stress assessment of milk-fed goat kids and lambs transported by road at short-distances

A. Elhadi¹, M. Sort¹, R. Costa², A. Recio¹, X. Such¹, A.A.K. Salama¹ & G. Caja¹

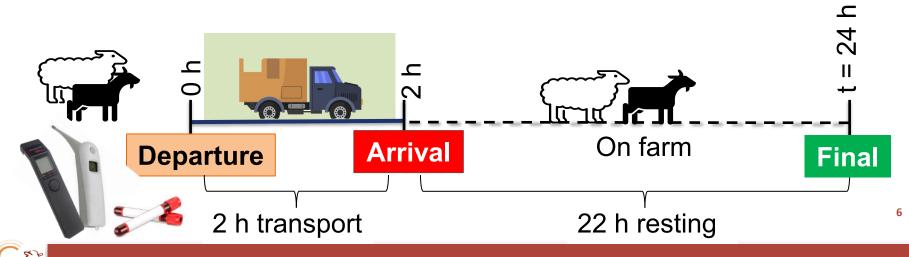
¹Group Res. in Ruminants (G2R), Dep. Animal and Food Sci., Faculty of Veterinary

²Servei de Granges i Camps Experimentals

Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona, Spain)

TechCare Final Conference, University Foundation, Brussels, 17-18 June 2025

6


TechCare: Monitoring transportation stress

Rationale:

- Near 20 M head/yr of suckling kids (< 10 kg BW; "cabrito") and suckling lambs (<15 kg BW; "lechal") are sent to the abattoir over short journeys in the Mediterranean EU countries.
- Few information is available on suckling kids and lambs and the current Regulation (EC 1/2005) shows imprecisions....

Aim:

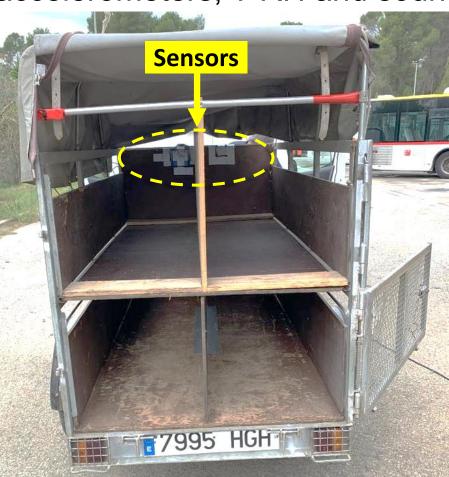
 Monitoring the transportation stress of light kids and lambs by using physiological and PLF tools.

 Space allowances for sheep and goat transported by road (EC 1/2005, under revision)

Species	BW, kg	m²/animal	m²/kg
Sheep unshorn	> 55	> 0.4	> 0.007
	< 55	0.3-0.4	0.006-0.007
Shorn & lambs	> 26	0.2-0.3	0.008-0.012
Small lambs ¹	< 20	> 0.2	> 0.010
Goats	> 55	> 0.4-0.75	0.007-0.014
	35-55	0.3-0.4	0.007-0.009
	< 35	0.2-0.3	0.006-0.009
Small kids (no data)	< 10	> 0.1?	> 0.010?

¹Older than 1 wk (unless transported < 100 km). "As an indication: for small lambs, an area of <u>under 0.2 m</u>² per animal may be provided".

Material & methods:


- **Trailer:** Approved for animal transport (2-floor and 1-axle; EUCAR, C-7-GW 750 kg, Mataró, Spain; 1.8 × 1.0 × 1.3 m), **4 compartments** of **0.9 m² each.**
- Sensors: 3A accelerometers, T-RH and sound

Driver's cabin vs. Trailer

2 x 3A accelerometers

Data logger (T & RH)

Sound sensor

Material & methods:

Transport densities for kids in 3 trips (n = 75)

Density	High	Low
Kids, n	45 (25♀ + 20♂)	30 (14♀ + 16♂)
BW, kg	9.28 ± 0.20	9.42 ± 0.27
Space, m ² /kg BW	0.013	0.018
Space, m ² /animal	0.122 (130%)	0.169 (180%)

Transport densities for lambs in 4 trips (n = 80)

Density	Standard	Low
Lambs, n	48 (22♀+ 26♂)	32 (18♀ + 14♂)
BW, kg	13.73 ± 0.18	13.72 ± 0.13
Space, m ² /kg	0.011	0.016
Space, m ² /animal	0.149 (110%)	0.219 (160%)

Material & methods: Kid's transport (n = 75)

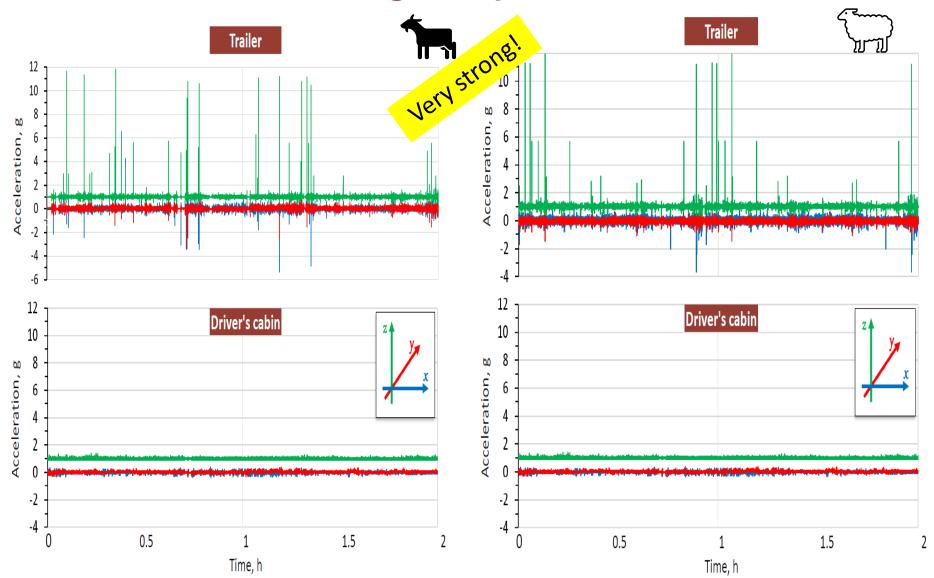
• Road and trip description: 3 trips (Oct-Nov, 2022-2023)

Duration	1 h 56 min
Distance, km	119 ± 2
Speed, km/h	62 ± 1
Unevenness, m	575

Material & methods: Lamb's transport (n = 80)

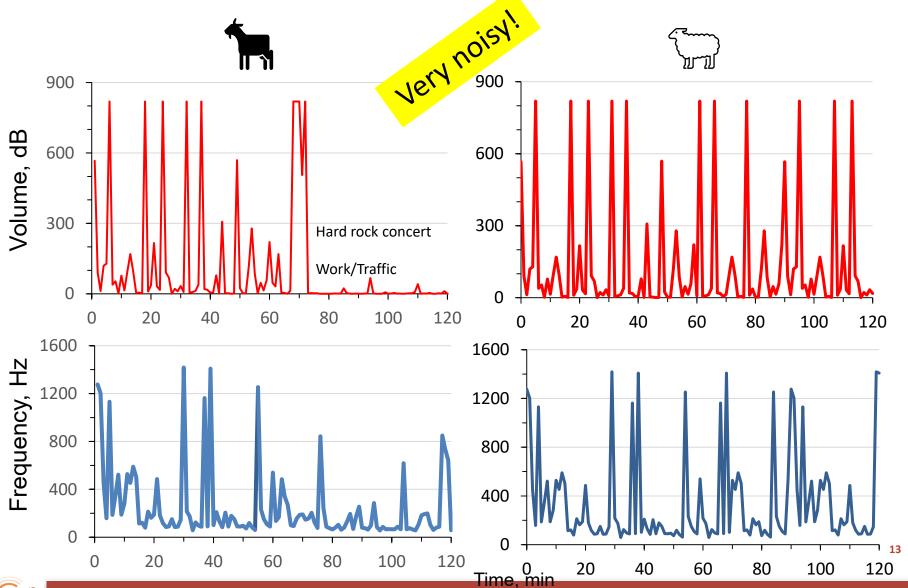
• Road and trip description: 4 trips (Oct-Nov, 2022-2023)

Duration 2 h	10	1	min
---------------------	----	---	-----

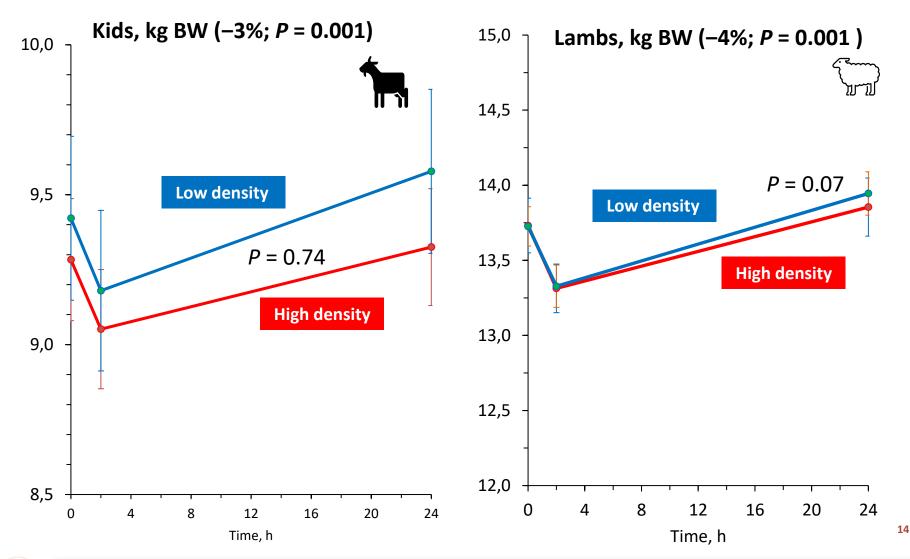

Distance, km 116 ± 2

Speed, km/h 57 ± 2

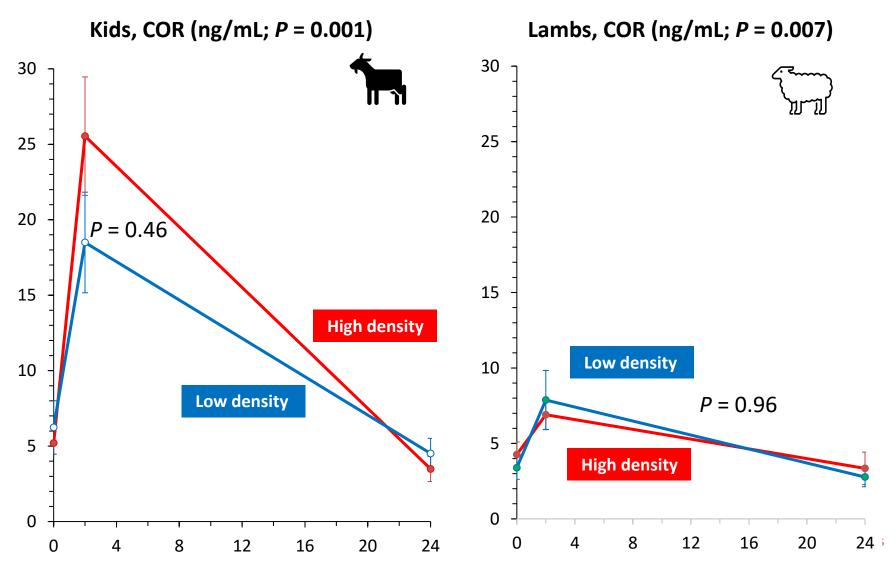
Unevenness, m 581



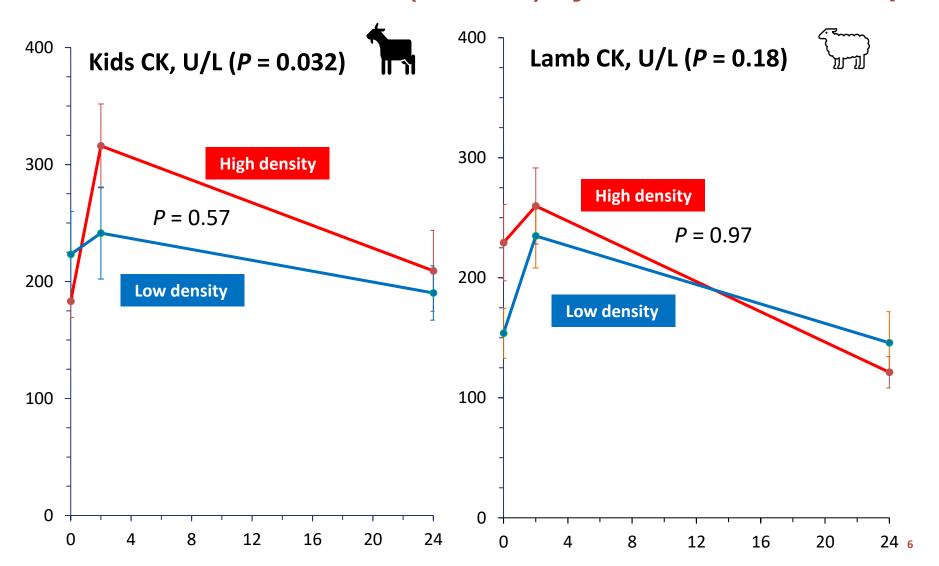
• 3A acceleration during transportation in kids and lambs



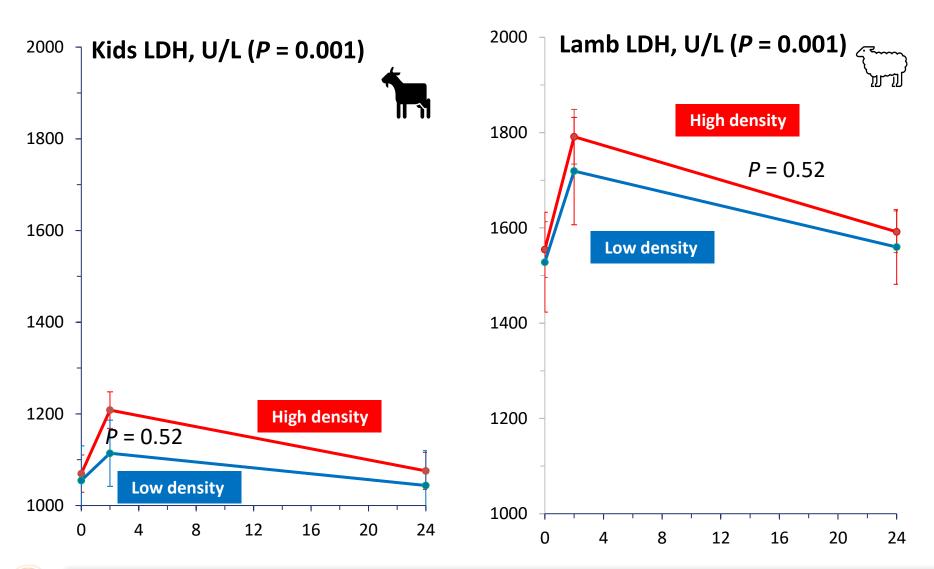
Sound recorded during transportation in kids and lambs



Body weight losses by effect of road transportation



Serum cortisol by effect of road transportation



Serum creatine kinase (CK, U/L) by effect of road transp.

Serum LDH by effect of road transportation

Results: Effects of transport density in **kids** (n = 75)

lt o no	Low High	1 CE	Effect (P <)			
Item	(0.018 m ² /kg)	(0.013 m ² /kg)	± SE	Density	Time	Sex
Kids, n	30	45				
BW, kg	9.34	9.30	0.24	0.74	0.001	0.001
Temperatures						
Rectal, °C	39.32	39.38	0.04	0.21	0.008	0.22
<mark>Lacrimal, °C</mark>	34.87	35.25	0.17	<mark>0.045</mark>	0.12	0.53
<mark>Iris, °C</mark>	34.84	35.27	0.19	<mark>0.07</mark>	0.033	0.55
Armpit, °C	35.46	35.68	0.17	0.30	0.007	0.07
Blood serum						
CK, U/L	221	236	29	0.57	0.032	0.74
Cortisol, ng/mL	9.4	10.7	2.7	0.46	0.001	0.54
Glucose, mg/dL	123	117	6	0.13	0.001	0.68
LDH, U/L	1074	1111	61	0.55	0.001	0.66
FFA, mmol/L	0.260	0.323	0.028	<mark>800.0</mark>	0.001	0.78
Urea, mg/dL	18.1	18.9	0.9	0.32	0.001	0.023

Results: Effects of transport density in **kids** (n = 75)

l to mo	Low High	1 CE	Effect (P <)			
Item	(0.018 m ² /kg)	(0.013 m ² /kg)	± SE	Density	Time	Sex
Kids, n	30	45				
BW, kg	9.3	32	0.24	NS	0.001	0.001
Temperatures						
Rectal, °C	39.	35	0.04	NS	0.008	NS
<mark>Lacrimal, °C</mark>	34.87	35.25	0.17	<mark>0.045</mark>	NS	NS
<mark>Iris, °C</mark>	34.84	35.27	0.19	<mark>0.07</mark>	0.033	NS
Armpit, °C	35.57		0.17	NS	0.007	0.07
Blood serum	·um					
CK, U/L	22	9	29	NS	0.032	NS
Cortisol, ng/mL	10.1		2.7	NS	0.001	NS
Glucose, mg/dL	120		6	NS	0.001	NS
LDH, U/L	1093		61	NS	0.001	NS
FFA, mmol/L	0.260	0.323	0.028	<mark>0.008</mark>	0.001	NS
Urea, mg/dL			0.9	NS	0.001	0.023

Results: Effects of transport density in lambs (n = 80)

Item	Low	High	± SE i	Effect (P <)			
nem	(0.016 m ² /kg)	(0.011 m ² /kg)	I SE	Density	Time	Sex	
Lambs, n	32	48					
BW, kg	<mark>13.74</mark>	<mark>13.33</mark>	0.24	<mark>0.07</mark>	0.001	0.027	
Temperatures							
Rectal, °C	39.36	39.38	0.07	0.76	0.33	0.54	
Lacrimal, °C	34.53	34.39	0.34	0.66	0.007	0.31	
Iris, °C	34.62	34.88	0.33	0.40	0.78	0.32	
Armpit, °C	35.38	35.52	0.21	0.58	0.001	0.09	
Blood serum							
CK, U/L	300	298	70	0.97	0.18	0.48	
Cortisol, ng/mL	4.5	4.5	1.1	0.96	0.007	0.026	
Glucose, mg/dL	119	115	5	0.29	0.001	0.012	
LDH, U/L	1568	1625	90	0.52	0.16	0.017	
FFA, mmol/L	0.239	0.241	0.037	0.95	0.001	0.27	
<mark>Urea, mg/dL</mark>	<mark>27.3</mark>	<mark>24.5</mark>	1.2	<mark>0.016</mark>	0.06	0.033	

Results: Effects of transport density in **lambs** (n = 80)

Item	Low High		± SE	Effect (P <)		
rtem	(0.016 m ² /kg)	(0.011 m ² /kg)	I SE	Density	Time	Sex
Lambs, n	32	48				
BW, kg	<mark>13.74</mark>	<mark>13.33</mark>	0.24	<mark>0.07</mark>	0.001	0.027
Temperatures						
Rectal, °C	39.	37	0.07	NS	NS	NS
Lacrimal, °C	34.46		0.34	NS	0.007	NS
Iris, °C	34.75		0.33	NS	NS	NS
Armpit, °C	35.45		0.21	NS	0.001	0.09
Blood serum						
CK, U/L	299		70	NS	NS	NS
Cortisol, ng/mL	4.	5	1.1	NS	0.007	0.026
Glucose, mg/dL	11	7	5	NS	0.001	0.012
LDH, U/L	159	97	90	NS	NS	0.017
FFA, mmol/L	0.240		0.037	NS	0.001	NS
<mark>Urea, mg/dL</mark>	<mark>27.3</mark>	<mark>24.5</mark>	1.2	<mark>0.016</mark>	<mark>0.06</mark>	0.033

Conclusions:

- Despite travelling short journeys (2 h), suckling kids and lambs were highly stressed (peak of cortisol).
- Kids were more stressed than lambs.
- BW and metabolic indicators recovered after resting.
- Marked vertical acceleration (shocks) and loud sound (noise) were detected, needing reduction in trailers.
- Both kids and lambs showed cold stress signs, despite the mild weather during the journey (THI = 60-74), and closed trailers are recommended.
- The use of low densities ~0.016 m²/kg (6-8 kids/m² or 5-7 lambs/m²), are recommended for kids and lambs.

Thanks for attention!

Thanks for a mild, not crowded, not shaking and not noisy room!

Integrating innovative TECHnologies along the value Chain to improve small ruminant welfARE management

https://techcareproject.eu/

More info: gerardo.caja@uab.cat

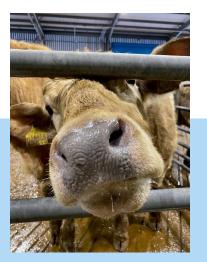
European

TechCare

2. Transportation trials

Sheep transport by sea

Cathy Dwyer (SRUC)

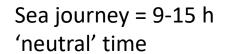


The problem

Orkney

Inverness

25,000 cattle pa


Shetland

Aberdeen

140,000 sheep pa

TechCare

Methods

- Three accompanied journeys of sheep from Shetland to Aberdeen
 - 36 compartments, 1236 lambs observed

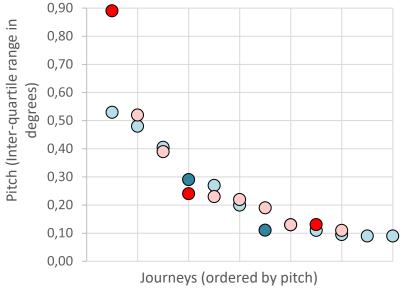
During transport

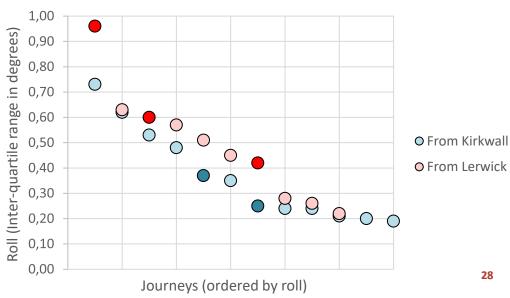
- Vessel motion recorded using Lowell Mat1B motion sensor on deck and Omni MSR sensors in compartments (6 planes)
 - Move in 3 planes
 - Rotate in 3 planes
- Sound (volume) inside the compartments and on the decks
- Temperature and humidity in compartments and on the decks
- Air quality (ammonia)

Animal based measures

- Observations of 1 min every 20 minutes from video (mean 46 observations per journey)
- Recorded standing/lying; idle, eating, drinking, ruminating or panting (laboured breathing), vocalising
- Involuntary responses to motion (counts): adjusting position, contact with walls or other animals, falls

TechCare




Sensor/tech outputs – vessel motion

Red dots signify sheep journeys from Shetland

O From Kirkwall O From Lerwick

Dark red are accompanied journeys

O From Lerwick

Sensor/tech outputs – noise (dB)

Lamb behaviour – journey 'roughness' (sea conditions)

- Rough crossings (sea conditions) meant animals were more likely to stand than lie
- Animals did not eat or drink for mean of 16.5 hr when crossing
- Very low frequency of ruminating (no food/nausea?)
- Falling and panting infrequent

No injuries that could be unambiguously related to ferry journey Limited data on arrival as most lambs left in <1 h for next journey Lambs tended to stand, and not drink or ruminate in lairage

Conclusions

- PLF sensors etc helped to assess the experience of the lambs on the journey
- Journeys were typically long, noisy, limited access to food and water, rapid onward travel
- Journeys typically not overly hot or humid and most relatively calm (did not cause falls/injuries)
- High sensory load for sheep
- On rough crossings sheep were more likely to stand and less likely to ruminate, some adjustment of posture
- Sea journeys are complex (options to alter route to avoid worst weather), no clear PLF measure that could allow assessment of potential welfare impact
- High pitch and roll may be more unpleasant for sheep

